Multiscale coupling of finite element and lattice Boltzmann methods for time dependent problems
نویسندگان
چکیده
In this work we propose a new numerical procedure for the simulation of timedependent problems based on the coupling between the finite element method and the lattice Boltzmann method. The two methods are regarded as macroscale and mesoscale solvers, respectively. The procedure is based on the Parareal paradigm and allows for a truly multiscale coupling between two numerical methods having optimal efficiency at different space and time scales. The motivations behind this approach are manifold. Among others, we have that one technique may be more efficient, or physically more appropriate or less memory consuming than the other depending on the target of the simulation and/or on the sub-region of the computational domain. The theoretical and numerical framework is presented for parabolic equations even though its potential applicability is much wider (e.g. Navier-Stokes equations). Various numerical examples on the heat equation will validate the proposed procedure and illustrate its multiple advantages.
منابع مشابه
A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure
This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...
متن کاملAn Adaptive Mesh Refinement Strategy with Conservative Space-Time Coupling for the Lattice-Boltzmann Method
A conservative lattice-Boltzmann method is presented for solving the time-dependent Navier-Stokes equations at low Mach numbers on lattices that are adaptively refined in space and time. A method for coupling the interfaces between grids at different resolutions was constructed following techniques established for finite-volume computational fluid dynamics methods. The effectiveness of the new ...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملCalculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations
The lattice Boltzmann (LB) method is an efficient technique for simulating fluid flow through individual pores of complex porous media. The ease with which the LB method handles complex boundary conditions, combined with the algorithm’s inherent parallelism, makes it an elegant approach to solving flow problems at the sub-continuum scale. However, the realities of current computational resource...
متن کاملA simulation technique for slurries interacting with moving parts and deformable solids with applications
A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main ...
متن کامل